Linearity and Complements in Projective Space
نویسندگان
چکیده
The projective space of order n over the finite field Fq, denoted here as Pq(n), is the set of all subspaces of the vector space Fnq . The projective space can be endowed with distance function dS(X, Y ) = dim(X) + dim(Y ) − 2 dim(X ∩ Y ) which turns Pq(n) into a metric space. With this, an (n,M, d) code C in projective space is a subset of Pq(n) of size M such that the distance between any two codewords (subspaces) is at least d. Koetter and Kschischang recently showed that codes in projective space are precisely what is needed for error-correction in networks: an (n,M, d) code can correct t packet errors and ρ packet erasures introduced (adversarially) anywhere in the network as long as 2t + 2ρ < d. This motivates new interest in such codes. In this paper, we examine the two fundamental concepts of “complements” and “linear codes” in the context of Pq(n). These turn out to be considerably more involved than their classical counterparts. These concepts are examined from two different points of view, coding theory and lattice theory. Our discussion reveals some surprised phenomena of these concepts in Pq(n) and leaves some interesting problems for further research.
منابع مشابه
ON THE STRUCTURE OF FINITE PSEUDO- COMPLEMENTS OF QUADRILATERALS AND THEIR EMBEDDABILITY
A pseudo-complement of a quadrilateral D of order n, n, > 3, is a non-trivial (n+l)- regular linear space with n - 3n + 3 points and n + n - 3 lines. We prove that if n > 18 and D has at least one line of size n - 1, or if n > 25 , then the set of lines of D consists of three lines of size n -1, 6(n - 2) lines of size n - 2, and n - 5n + 6 lines of size n - 3. Furthermore, if n > 21 and D...
متن کاملAffinization of Segre products of partial linear spaces
Hyperplanes and hyperplane complements in the Segre product of partial linear spaces are investigated. The parallelism of such a complement is characterized in terms of the point-line incidence. Assumptions, under which the automorphisms of the complement are the restrictions of the automorphisms of the ambient space, are given. An affine covering for the Segre product of Veblenian gamma spaces...
متن کاملPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملAffine Spaces within Projective Spaces
We endow the set of complements of a fixed subspace of a projective space with the structure of an affine space, and show that certain lines of such an affine space are affine reguli or cones over affine reguli. Moreover, we apply our concepts to the problem of describing dual spreads. We do not assume that the projective space is finitedimensional or pappian. Mathematics Subject Classification...
متن کاملProjective Representations I. Projective lines over rings
We discuss representations of the projective line over a ring R with 1 in a projective space over some (not necessarily commutative) field K. Such a representation is based upon a (K,R)-bimodule U . The points of the projective line over R are represented by certain subspaces of the projective space P(K,U ×U) that are isomorphic to one of their complements. In particular, distant points go over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1103.3117 شماره
صفحات -
تاریخ انتشار 2011